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Recirculation within a fluid sphere at moderate
Reynolds numbers
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Motion of a single fluid sphere is described by two theories, each characterized by
different levels of Hill’s vortex circulation within the sphere. An existing experimental
data set giving measurements of vertical velocity along the major axis of the sphere
is re-examined. Contrary to published discussions of that experiment, we find that
the theory of Parlange agrees better with the laboratory data than that of Harper &
Moore. This agreement supports the key difference between the two theories, i.e. that
the fluid within the sphere is unlikely to have a singular (infinite) velocity as it moves
upwards towards the stagnation region at the top of the sphere.

1. Introduction
Steady-state motion of a fluid sphere in a quiescent medium induces recirculation

within the sphere. Normally, hydrodynamic forces and surface tension will affect the
shape of the interface, but we assume that shape is near spherical, e.g. because of
surface tension effects. We also assume that the Reynolds number is of a magnitude
such that viscous effects are important only in thin boundary layers and that the
recirculating flow, outside the boundary layers, is that of a Hill’s vortex (Harper
& Moore 1968; Parlange 1970). Both Harper & Moore (1968) and Parlange (1970)
give an estimate of the strength of the vortex. The former authors assume that the
fluid within the sphere moving upwards from the rear stagnation region retains its
vorticity all the way to the front stagnation region, so that the velocity eventually
has a singularity and becomes infinite. On the other hand, Parlange (1970) presented
an alternative model based on the assumption that this singularity is not physically
feasible and that vorticity possibly diffuses away in spite of low viscous effects, because
the fluid spends a relatively long time in the front stagnation region of the bubble.
One can speculate that other physical processes might also be responsible for erasing
the singularity.

At first sight, at least, it would seem obvious to compare the models of Harper
& Moore (1968) and Parlange (1970) from terminal velocity measurements of rising
bubbles. Unfortunately, it is not possible to distinguish the accuracy of the models
from such measurements as the predicted drags are very similar. Yet the predicted
circulations are significantly different, typically by a factor slightly larger than two, for
example. Consequently, Parlange (1970) suggested that measurement of the recircu-
lation would be an excellent means to evaluate the two models. These measurements
were obtained by Bhaga & Weber (1981) who carried out careful experiments in
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the wake of spherical cap bubbles. Interestingly, the wake is near spherical at large
enough Reynolds numbers but still in the laminar regime, as first discussed by
Parlange (1969) (cf. Wegener & Parlange 1973). Bhaga & Weber (1981) stated, as
illustrated in their figure 20, that ‘the data are well fitted by the Harper & Moore
theory’. Consequently, they concluded that ‘the assumption of Harper & Moore
(1968) that the fluid . . . retains its vorticity . . . is more reasonable than the vorticity
destruction assumption of Parlange (1970)’. Based on those crucial experiments, the
theory of Harper & Moore (1968) is currently preferred to that of Parlange (1970)
(e.g. Dandy & Leal 1989; Fan & Tsuchiya 1990; Hoffmann & van den Bogaard 1995;
Hoogstraten et al. 1998).

Since Bhaga & Weber (1981) carried out exactly the experiments for which the
two theories make significantly different predictions, the results seemed conclusive.
However, recently we had occasion to re-examine their experimental results carefully.
In particular, we consider predictions of recirculation within the wakes without (§ 2)
and with (§ 3) boundary layer corrections. Two points concerning their theoretical
analysis became apparent:

1. Bhaga & Weber (1981) used the wrong Reynolds number in calculating the new
Hill’s vortex versions of the theories of Harper & Moore (1968) and Parlange (1970);
and, much more importantly.

2. They did not apply boundary layer corrections, as required by both theories.
The second issue is explored in detail below.

2. Spherical cap experiments
We generally follow the notation of Parlange (1970). The recirculating flow within

a spherical drop or bubble is a Hill’s vortex, with stream function, Ψi. The theory of
Parlange (1970) gives, for Ψi,

Ψi =
3ur2 sin2 θ(r2 − a2)

4a2

[
1−

(
1 +

3

2

µi

µo

)
4

(3πRo)1/2

]
. (2.1)

Here, subscript i refers to values inside the drop and o outside, µ is the viscosity, u
the (steady) velocity of the drop, Ro the Reynolds number (2ρua/µ), ρ the density, a
the radius of the drop, r and θ the usual spherical coordinates (see figure 1). Note
that, for the spherical cap experimental data considered below, the material properties
inside and outside the wake are identical.

For the wake of a spherical cap bubble then, (2.1) reduces to

Ψi =
3ur2 sin2 θ(r2 − a2)

4a2

[
1− 10

(3πRo)1/2

]
. (2.2)

The corresponding expression of Harper & Moore (1968) is

ΨiHM =
3ur2 sin2 θ(r2 − a2)

4a2

[
1 + C

(
2

Ro

)1/2
]
. (2.3)

The coefficient, C , of the (2/Ro)
1/2 correction in (2.3) is obtained from the solution of

the integral equation (3.23) of Harper & Moore (1968). We solved their integral equa-
tion numerically and found that the difference between the empirical approximation
they suggest for 21/2C and its exact value is insignificant, i.e. −7.5 versus −7.46762.
Although there is very little difference between these values, we use the exact value
in the following.
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Figure 1. Schematic outline of a fluid sphere (radius a), showing the coordinate system used and
boundary layers, the latter indicated by dashes in the front stagnation region for the internal
boundary layer, where they disappear. The inner and outer boundary layers produce the inner and
outer wakes when they reach the rear of the sphere (θ = π).

The correction of order R
−1/2
o in (2.2) is less than half the correction in (2.3) so

that, as noted above, the two theories are significantly different in this respect. In the
experiment of Bhaga & Weber (1981), the Reynolds number based on the gas bubble
equivalent diameter is 94. Ro, however, requires knowledge of the radius of the wake
a. There is some ambiguity in estimating a as the wake behind the spherical cap is not
exactly a sphere as is clear, for example, from figure 19(d ) of Bhaga & Weber (1981).
For instance, on that figure, the position of the closed wake suggests a ' 2.61 cm or
Ro ' 188.

Bhaga & Weber (1981) measured the vertical velocity along the line θ = π/2 (data
shown in figure 2). Note that, in line with the flow direction shown in figure 1, the sign
of the normalized velocity, q/u, is opposite to that used by Bhaga & Weber (1981).
Equations (2.2) and (2.3) can each be used to predict a velocity, ignoring boundary
layer corrections, from

qiθ =
1

r

∂Ψ

∂r
. (2.4)

Both predictions are shown in figure 2 for Ro = 188. We show also in that figure the

uncorrected Hill’s vortex, i.e. for r/a 6 1, either (2.2) or (2.3) without the O(R
−1/2
o )

corrections or, for r/a > 1, (3.5) below, again without the correction term. In the
various figures presented subsequently, the difference between the classical Hill’s
vortex prediction and various theoretical predictions is negligible for r/a > 2, and so
all plots are truncated at r/a = 2.

From figure 2, we observe that in the region of positive velocities there is little to
justify preferring one result over the other: one is above and one below the data by
about the same amount. It is only near the axis that Harper & Moore (1968) appears
to fit the data far better. Note also that as the flow is axisymmetric the volume of
fluid in that region is relatively small.
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Figure 2. Vertical velocity measurements (symbols) of Bhaga & Weber (1981); together with the
Hill’s vortex: dashes; predictions of Parlange (1970): thick line, (2.2); and predictions of Harper &
Moore (1968): thin line, (2.3). All predictions based on Ro = 188.

As can be seen from figure 2, (2.2) predicts a relative velocity of −1.14 for r/a = 0,
which is below the measured value of around −0.73. By comparison, (2.3) predicts
the slightly higher velocity of −0.68 which is in fact consistent with the numerical
results of Hoffmann & van den Bogaard (1995) (see their figure 7). However, Bhaga
& Weber (1981), in their application of (2.2), suggest a velocity of around −1.05
at r/a = 0, i.e. they take Ro to be as low as 120, which is clearly incorrect, as we
remarked in § 1. Taking this value slightly improves the comparison of (2.2) with the
experimental data (see their figure 20). Figure 2, by contrast, shows the appropriate
prediction of (2.2) computed taking Ro = 188. Their error, however, does not affect
the following analysis at all and has no impact on the discussion. On the other hand,
in their application of (2.3), Bhaga & Weber (1981) use the more realistic value of
Ro of around 212. This value (i.e. 212) is also consistent with the numerical results
of Hoffmann & van den Bogaard (1995) (see their table 1) suggesting that we should
have Ro = 94× 2.26 ' 212. It is unclear what value to take for Ro. This is in part due
to the fact that the recirculating flow is not exactly spherical and it is likely that we
could reasonably take Ro as 188 or 212. In the following we systematically consider
both values of Ro and so check on the sensitivity of the results to this uncertainty.

So far only the Hill’s vortex solutions have been discussed. It is interesting that
in the application of the theoretical results neither Bhaga & Weber (1981) nor
Hoffmann & van den Bogaard (1995) attempted to consider the effect of boundary
layer corrections on the theoretical predictions. Such corrections are crucial to the
analysis of the experimental data, the details of which follow.

3. Boundary layer corrections
Taking into account boundary layers for r/a ' 1, the theory of Parlange (1970)

gives the normalized velocity as, for θ = π/2, and r/a 6 1,

qiθ

u
=

[
3

2
− 5

(
3

πRo

)1/2
](

2
r2

a2
− 1

)
+

(
2

Ro

)1/2

fi, (3.1)
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Figure 3. Vertical velocity measurements (symbols) of Bhaga & Weber (1981); together with the
predictions of (3.1) and (3.5): thin line, Ro = 188; thick line, Ro = 212.

with the boundary layer correction given by

fi =
5

4

(
6

π

)1/2

N

[
4

9
,

(
Ro

2

)1/2 (
1− r

a

)]
− 5Φ

[
3

4

(
Ro

2

)1/2 (
1− r

a

)]
, (3.2)

where Φ(z) = π−1/2 exp(−z2)− zerfc(z) is the integral of the coerror function and

N(X,Y ) =
Y

2π1/2

∫ X

0

sin2 θ(λ)

(X − λ)3/2
exp

[ −Y 2

4(X − λ)
]

dλ, (3.3)

with sin2 θ(λ) given by

sin2 θ(λ) = 1− 4 cos2

[
1

3
arccos

(
9

4
λ− 1

)
+
π

3

]
. (3.4)

For θ = π/2 and r/a > 1, Parlange (1970) predicts

qoθ

u
=

(
1 +

a3

2r3

)
+

(
2

Ro

)1/2

fo, (3.5)

the first term being the standard potential flow and the second one the boundary
layer correction with

fo = −5

4

(
6

π

)1/2

N

[
4

9
,

(
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2

)1/2 ( r
a
− 1
)]
− 5Φ

[
3

4

(
Ro

2

)1/2 ( r
a
− 1
)]

. (3.6)

The predictions of (3.1) and (3.5) are shown on figure 3. There is a marked
discrepancy between the measurements and predictions near the axis (r/a < 1/2).
Clearly, the results are quite insensitive to the value of Ro. The corresponding curves
derived using (3.19) and (3.20) of Harper & Moore (1968) are shown in figure 4.
Recall that those are far more complex than ours as another integral term has
to be added and calculated numerically. Overall, there is good agreement between
measurements and predictions, again with little variation due to changes in Ro. In
contrast to figure 3, the results in figure 4 show better agreement with the data near
the axis.
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Figure 4. Vertical velocity measurements (symbols) of Bhaga & Weber (1981); together with the
predictions of (3.19) and (3.20) from Harper & Moore (1968): thin line, Ro = 188; thick line,
Ro = 212.

Close examination of figure 4 reveals a discontinuity in slope at r/a = 1. Likewise,
this discontinuity is present in figure 3, although it is very difficult to discern because
the correction terms in figure 3 are less than half those in figure 4. We shall consider
this issue shortly.

So far we have considered the boundary layer correction at the periphery of the
wake (r/a ' 1). When the boundary layers reach the rear of the sphere (θ = π) they
turn and form a thin wake behind the main wake for r/a > 1 and turn inwards
for r/a < 1 to form a sort of inner wake. Those two thin wakes do not contribute
significantly to the viscous dissipation since they affect a small volume only, the flow
being axisymmetric. Thus, Parlange (1970) ignored them to calculate the drag. On the
other hand, the velocity distribution is strongly affected in which case the inner wake
cannot be ignored in its calculation.

As the inner wake progresses toward the front of the sphere it is slowly eroded
by diffusion (figure 1). It is, we recall, the assumption of Parlange (1970) that in
the front stagnation region the Hills’s vortex is fully established whereas Harper &
Moore (1968) assume that the wake is not affected by diffusion and that the signal
is carried from the rear to the front essentially unchanged. There is no doubt that in
the middle of the main wake (θ = π/2) the inner wake is largely intact. Only in the
front stagnation region could it be affected. It is then easy to estimate the velocity
correction due to that inner wake at θ = π/2. The calculation was carried out in detail
by Moore (1963) for a spherical gas bubble, in which case he needed to consider only
the thin wake outside the bubble and the fo correction only contained the Φ term,
see his equation (3.29). However, his procedure applies equally well to the inner wake
and, at θ = π/2, we obtain another correction to be added to the solution, equal to

− 15

R
1/2
o

{
1

4

(
3

π

)1/2

N

[
8

9
,

(
Ro

2

)1/2
r2

3

]
− Φ

(
R1/2
o

r2

8

)}
, (3.7)

with a similar expression for the case of Harper & Moore (1968).
The result of this correction is shown in figure 5. The figure shows very good

agreement between predictions and measured data, with little sensitivity to Ro. The
corresponding correction for Harper & Moore (1968) is given in figure 6. The
predictions there are still insensitive to Ro, with a clear slope discontinuity at r/a = 1.
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Figure 5. Vertical velocity measurements (symbols) of Bhaga & Weber (1981); together with the
predictions of (3.1), (3.5) and (3.7): thin line, Ro = 188; thick line, Ro = 212.
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Figure 6. Vertical velocity measurements (symbols) of Bhaga & Weber (1981); together with the
predictions of (3.19) and (3.20) from Harper & Moore (1968), and equivalent correction to that
presented in (3.7): thin line, Ro = 188; thick line, Ro = 212.

The agreement between predictions and measurements is now quite poor near the
axis (r/a < 1/2), compared with figure 4.

Several observations can be made in comparing the theoretical predictions in
figures 5 and 6: Parlange (1970) shows an excellent fit to the data, providing perhaps
a higher envelope for the observations. The prediction of Harper & Moore (1968) is
less accurate especially for 1/2 < r/a < 1. For r/a < 1/2 the inner wake correction
greatly improves the result of Parlange (1970) when compared to figure 2, i.e. the Hill’s
vortex alone ignoring the inner wake. With the prediction of Harper & Moore (1968)
the opposite happens: the inner wake destroys the apparent agreement in figure 2.
In their case, the inner wake is crucial to their formulation and cannot be ignored.
Finally at r/a = 1, we recall, as mentioned already, that for both predictions there is
a discontinuity in slope and hence in stress, because the stress continuity is satisfied
to the lowest order only (Harper & Moore 1968; Parlange 1970). This is particularly
obvious for the prediction of Harper & Moore (1968) because their corrections are

twice as large as those of Parlange (1970). Without affecting the solution to O(R
−1/2
o ),

we can easily remove this blemish if we multiply all the Φ corrections by an ad hoc
factor: 1 − 8(3πRo)

−1/2 for Parlange (1970) and 1 + 4C(2/Ro)
1/2/5 for (2.3) without
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significantly affecting the rest of the predictions. Indeed, plots of the slope-corrected
predictions are very similar to those shown in figures 5 and 6, and so are not presented
here.

4. Conclusions
The experiments of Bhaga & Weber (1981) provide crucial data to discriminate

in general between the predictions of the theories of Harper & Moore (1968) and
Parlange (1970) for recirculating flows within a fluid sphere, i.e. drops and bubbles.
The agreement between the measured data and predictions of the latter theory is
quite good, and there is certainly no experimental basis for the suggestion of Bhaga
& Weber (1981) that the theory of Harper & Moore (1968) is in better agreement
with observations. Their statement was based on an incomplete application of the
theoretical results ignoring boundary layer corrections.

Finally, as the two competing theories are based on different behaviour of the
vorticity along the axis of the fluid sphere – Harper & Moore (1968), in contrast to
Parlange (1970), assuming that vorticity does not diffuse there – it is encouraging that
they are in agreement in most places except near the axis. Even with a somewhat
ad hoc correction to improve the theory of Harper & Moore (1968), the theory
of Parlange (1970) remains clearly more accurate. In addition, computation of the
latter’s theory is far simpler because the flow field has no singularity. The corrections

of O(R
−1/2
o ) are less than half the magnitude of the corrections of Harper & Moore

(1968). Since the theories apply for small corrections, this means that the theory of
Parlange (1970) can be used for Reynolds numbers about five times smaller than that
of Harper & Moore (1968).
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